On Characterization of Quadratic Splines
نویسندگان
چکیده
A quadratic spline is a differentiable piecewise quadratic function. Many problems in numerical analysis and optimization literature can be reformulated as unconstrained minimizations of quadratic splines. However, only special cases of quadratic splines are studied in the existing literature, and algorithms are developed on a case by case basis. There lacks an analytical representation of a general or even a convex quadratic spline. The current paper fills this gap by providing an analytical representation of a general quadratic spline. Furthermore, for convex quadratic spline, it is shown that the representation can be refined in a neighborhood of a non-degenerate point and a set of non-degenerate minimizers. Based on these characterizations, many existing algorithms for specific convex quadratic splines are also finite convergent for a general convex quadratic spline. Finally, we study the relationship between the convexity of a quadratic spline function and the monotonicity of the corresponding LCP problem. It is shown that, although both conditions lead to easy solvability of the problem, they are different in general.
منابع مشابه
Convergence of Integro Quartic and Sextic B-Spline interpolation
In this paper, quadratic and sextic B-splines are used to construct an approximating function based on the integral values instead of the function values at the knots. This process due to the type of used B-splines (fourth order or sixth order), called integro quadratic or sextic spline interpolation. After introducing the integro quartic and sextic B-spline interpolation, their convergence is ...
متن کاملOptimal Quasi-Interpolation by Quadratic C-Splines on Type-2 Triangulations
We describe a new scheme based on quadratic C-splines on type-2 triangulations approximating gridded data. The quasiinterpolating splines are directly determined by setting the BernsteinBézier coefficients of the splines to appropriate combinations of the given data values. In this way, each polynomial piece of the approximating spline is immediately available from local portions of the data, w...
متن کاملApproximation and geometric modeling with simplex B-splines associated with irregular triangles
Bivariate quadratic simplicial B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a Cl-smooth surface. The generation of triangle vertices is adjusted to the area1 distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-s...
متن کاملBisection algorithms for approximating quadratic Bézier curves by G1 arc splines
To describe the tool path of a CNC machine, it is often necessary to approximate curves by G arc splines with the number of arc segments as small as possible. Ahn et al. have proposed an iterative algorithm for approximating quadratic Bézier curves by G arc splines with fewer arc segments than the biarc method. This paper gives the formula of the upper bound for arc segments used by their algor...
متن کاملConvex Approximation by Quadratic Splines
Given a convex function f without any smoothness requirements on its derivatives, we estimate its error of approximation by C 1 convex quadratic splines in terms of ! 3 (f; 1=n).
متن کامل